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The aim of this paper was to lift traditional quantum logic to its higher order version
with the help of a type-theoretic method. A higher order axiomatic system is defined
explicitly and then a sound and complete class of models is given. This is an attempt to
provide a quantum counterpart of classical “set theory” or intuitionistic “topos.”
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1. INTRODUCTION

Ordinary mathematics is carried out in classical set theory, which is based on
classical logic. From this perspective, each choice of underlying logic must lead to
a different set theory. A most noteworthy example of such a study is a construction
of topos model for intuitionistic logic; an elementary topos can be considered as a
universe of intuitionistic sets (Bell, 1988; Lambek, 1980). The following questions
are then raised: Can we have a set theory baseguantum logi€ If so, how is
quantum mathematiaifferent from ordinary mathematics?

Although several suggestions have been made to establish quantum set theory,
none has been successful enough to be the basis of a rich mathematics. Takeuti
(1981) transfinitely constructed his quantum set theory on the analogy of Boolean
valued model for classical set theory. Unfortunately, however, it violates equality
axioms by its very nature. One has to admit that no interesting mathematics could be
founded without appropriate equality. Another approach is to extend the concept
of quantum logic first, and then consider a set theory based on it. Nishimura’s
empirical set theory (Nishimura, 1995) was intended to be the foundation, not
only of quantum mechanics, but of a more general setting—empirical sciences.
His development of topos-like theory is quite fascinating; however, a subobject
classifier and exponentials in the theory are allowed to exist only in very special
cases. This seems to expose an intrinsic uncongeniality between empirical logic (in
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particular, guantum logic) and topos theory. Finkelstein (1992) has also adopted a
higher order language for quantum theory under the name of higher order quantum
logic, employing the structure of Grassmann algebra; its style of formulation differs
markedly from that of traditional lattice logic.

In this paper, we focus aorthomodular lattice—the most well-known repre-
sentation of quantum logic (Dalla Chiara, 1984) and lift it in a very natural way to
its higher order version with the help of a type-theoretic method. Section 2 provides
a syntactic framework of our higher order quantum logic with equality, which is
shown to be sufficiently expressive to develop a set theory. Section 3 presents a
complete class of models for the syntax, thatis, a universe of quantum sets. The con-
sistency of the system is immediately derived from the existence proof of a model.
Finally, some characteristic features of quantum sets are examined in Section 4.

2. FORMAL SYNTAX
2.1. Language

We set out to define our formal languageof orderw via a type-theoretic
method, specifyingypesandterms

Definition 2.1.1(Types). The symbols for types of expressions are defined in-
ductively as follows:

() 1and< are types.
(ii) If necessary, one may have at most countably many additional symbols
for types.
(iii) If Aisatype, soifA
(iv) If AandB are types, so i\ x B.

Types which are not of the forfRAor A x B are calledyround types

Definition 2.1.2(Terms). Terms are expressions referring to objects or statements
in a world. For each typd\, a term of typePA s called aset-like termA set-like

term that contains no free variables is calledset or a quantum set, which

is an expression of a property. A term of tyfeis sometimes called formula,
which is an expression of a fact. A formula that contains no free variables is called
a closed formula or aentenceThe inductive definition is as follows:

(i) A symbol:x is aterm of type 1. For each ground typeone may add
at most countable constants of typgo £. A constant of typeA is a
term of typeA.

(i) For each typeA, we give countably many variableg, ya ... of type
A, sometimes omitting the subscripts. A variable of typis a term of
type A.
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(i) If ¢(x) is a formula that possibly contains a variaklef type A, then
{x € A| ¢(x)}is a (set-like) term of typ®A.
(iv) If aandb are terms of typeA and B, respectively, thefa, b) is a term
of type A x B.
(v) If aisaterm of typeA x B, then @); and @), are terms of typeé and
B, respectively.
(vi) If aanda’ are both terms of the same type, tlees @’ is a formula.
(vii) If a anda are terms of typeA and PA, respectively, them € « is a
formula.
(viii) If pandq are both formulas, then so [BA g.
(ix) If pisaformula, then so isp.
(X) If ¢(x) is a formula that possibly contains a variaklef type A, then
Vvx € A.¢(x) is aformula.

Remark. Parentheses are used to disambiguate expressions as usual. Some other
useful symbols can be introduced as abbreviations:

pvg=-(—=pA—0q)

p=g=-pVv(pAq)

ped=(pP=>9PAr@=p) =({pPArdV(pA—a)

Ix € A.p(X) = —(VX € A.=g(X))

Alx € Ap(X) =3Ix € A(p(X) AVY € A(p(Y) = (X =Y))
T==(pA—p)

1 =-=T

(X, y) e AxB|o(X,¥))={ze AxB|3Ixe A(Fye B.(z= (X, y)
A $(2)))}

2.2. Rules

We now state the formal proof procedure for our higher order quantum logic.
In the following, we writeA, B,...for types,p, q, ...for formulas,a, b, . .. for
terms, and, v, ... for variables ¢ (x) represents a formula that possibly contains
a free variablex and¢(a) a formula obtained frorgp(x) by replacing all free oc-
currences ok with a. The substitution is performed in the usual manner; technical
details are omitted. For notational simplicity, we exclusively consider formulas
with at most one free variable; the modification for multiple free variables is easy
to perform.T" denotes a finite (possibly empty) multiset of formulas, where a
multiset means a set in which each element may occur more than once.

The intuitive meanings of the clauses listed below are as follows: The ex-
pression of the forn’ - pis called esequentasserting that one can syntactically
deduce the formulg from the assumption of all the formulas ih The expres-
sionsI’, pkqandp,q+r meanl’ U {p} + qand{p, q} - r, respectively. The
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sequents above the horizontal line are the premises of the rule, and the one below
it is the conclusion of the rule: if all the sequents above the line hold, so does the
one below it. The one-line rules such as 2.1 are sometimes ¢alfgdper rules
asserting that those sequents always hold without any premises.

Structural Rules

pEp (2.1)
TpTl,phq
—rrq (Cut) (2.2)
'+q
Y (2.3)
['(x) = ¢(x)
A s 2.4
r@r o) 4)
Logical Rules
pAQEDp (2.5)
pAgiq (2.6)
'kprl'ta 2.7)
'pAagq '
pF-—p (2.8)
——pkp (2.9)
PA—=pPFQ (2.10)
pkq
— 2.11
ra— (2.11)
vx € Ag(X) - ¢(a) (2.12)
L Fé(9 (2.13)

I'FVx e Ag(x)

wherex does not occur freely ifv.
pA-(pA—=(gAPp)Fqg (Orthomodular Law) (2.14)
Equality Rules

Fa=a (2.15)
a="h,¢@)+F ¢(b) (2.16)
praagkp (2.17)

Fp=q
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Set Rules
Fz==x (2.18)
wherez is a variable of type 1.
F(((a, b))1 = a) A (((a, b))2 = b) (2.19)
F((@) (@)2) =a (2.20)
FXe{xeA|lop(X)}) =o(x) (Comprehension) (2.21)

Remark. Thereader may observe that our framework can be regarded as a natural
higher order extension of traditional quantum logic. The structural and the logical
rules essentially correspond to the axiomatic systems for propositional or first-order
guantum logic, studied by Goldblatt (1974), Dalla Chiara (1984), and Nishimura
(1980).

Formal Proof. A diagram of rules that satisfies the following inductive specifi-
cations is said to be proof diagramThe bottommost sequent of a proof diagram
is called itsend sequent.

(i) Animproper rule is itself a proof diagram.
(ii) If P is a proof diagram whose end sequent jsad § T is one of the
rules listed above, then /T is a proof diagram whose end sequentis T
(ii) If Py and B are both proof diagrams whose end sequents a@n8 S,
respectively, and;SS,/ T is one of the rules listed above, then®/ T
is a proof diagram whose end sequentis T

We say that the sequent Tpiovablef and only if there exists a proof diagram
whose end sequentis T

2.2.1. Derivable Rules

We next present some useful rules to shorten proofs, which are derivable from
those shown in the list above. It turns out that our axiomatic system has sufficient
expressive power to produce plenty of mathematically interesting theorems. We
only provide sketches of some proofs or omit them entirely.

T (2.22)

We have—p A pF —(a=a) by 2.10. Thera = at+ —(—p A p) by 2.11. Since
Fa=ahby2.15, we gek —=(—p A p) by 2.2.

Lpkr

AN (2.23)
I,pAghkr
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r,qkr
_arr (2.24)
CLpAaghr
prErafr (2.25)
pvgkr
pkpvq (2.26)
aFpvq (2.27)
pP=gqFp<q (2.28)
PFq (Deduction Theorem) (2.29)
Fp=q

We havep - q by assumptionangd - g by 2.1. Thenwe obtaip - p A qby 2.7.
We also havep A g F p by 2.5. Hence we infer p = p A g by 2.17. Applying
2.2 tothis and 2.28 establishes thap < p A g. In particular- p = p A g. We
get the conclusion by using the provable seqie(p = pAq) = (p = Q).

F;I:%qq (2.30)
% (2.31)

wherex does not occur freely imp.
o(X) F Ix € A.p(X) (2.32)
a=ata=a (2.33)
a=a,ad=a"a=a" (2.34)
(a,by=(c,dy-(@a=c)a(b=d) (2.35)

We have (a, b) = (c, d), ((a b))1 = ((& b))1 F ({(& b)) = ({c,d))1 by 2.16.
Hence we obtain(a, b) = (c,d) Fa=c by 2.19. Similarly, (a, b) = (c, d)
F b = d. We then get the conclusion by 2.7.

(@=c)a(b=d)F (a,b) = (c,d) (2.36)
dX)=Xea)F{xe Alo(X)} =« (2.37)

Leta ={x € A| ¢(X)}. We havep(x) = (x € {x € A| ¥y (X)}) F o(X) = ¥ (X)
by 2.21. We also havg(x) = ¥(X), {X € A| ¢(X)} ={x € A|dp(X)} F {x € A|
¢(X)} = {x € A| ¥(X)} by 2.16. Applying 2.2 leads to the desired conclusion.

Xea)=(xepB)Fa=p (Extensionality) (2.38)

We have ke a) =(x € B) F{x € A| (X € B)} = « by letting ¢(x) = (x € B)
in 2.37. Then it suffices to show thdix € A| (x € B)} = 8. We obtain
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xepB)=(xepB)F{xe A|(x e p)} =g byusing 2.37 again.
p(x) =y (X) F{x e Al p(X)} = {x € Al y(x)} (2.39)

We havep(x) = v(X) - o(X) = (X € {x € A| v(X)}) by 2.21. Applying 2.2 to
this and 2.37 establishes the conclusion.

{xeAlo(x)} ={xeAl¥(X)}Fo(X)=v(x) (2.40)

Wehavgx € Al op(X)} ={xe Al¥v(X)}, xe{xe Alo(X))) =(Xe{xe A
(XN Xe{xeAlop(X)}) =(xe{xe Al ¥(x)}) by 2.16. We then get the
conclusion by 2.21.

3. FORMAL SEMANTICS

This section provides mathematically strict meanings of the expressighs in
For this purpose, a class of models for higher order quantum calculus is specified,
roughly analogous to what is called Henkin models (Henkin, 1950) developed
originally for classical higher order logic. First, the precise concept of validity is
defined with respect to this class of models. Some important results are stated: Any
provable sequents are valid with respect to this class of models (soundness), and
conversely, any valid sequents with respect to this class of models are provable
(completeness). In the completeness proof, a concrete general model, called the
canonical model, is constructed. The existence of the model immediately implies
the consistency of our axiomatic system.

3.1. General Model for£

An L-frame is defined to be a collection of nonempty gé¥s}a(= {Da,
Dg, ...}) that satisfies the following conditions.

We associate with each ground tyfea setD 4, which is referred to as thio-
mainoftypeA. D; andDg mustin particular be a singleton setand an orthomodular
lattice, respectively. An orthomodular lattice here means an orthocomplemented
lattice satisfying the orthomodular law (Dalla Chiara, 1984). Its order, equality,
inf, orthocomplementation, top, and bottom are denotedcby, A, *, T, and
L, respectively (some symbols are the same as our logical symbols; this is not
expected to cause confusion since it is clear from the context). The domains of the
other types are constructed inductiveldp, is a certain collection of subsets of
Da, i.e.,Dpa € 2P~ and D, is the usual set-theoretic produdi x Dg.

Remark. The reduced case whebr, = {T, L} corresponds to a gerneral model
for classical higher order logic (Andrews, 1972; Henkin, 1950). Another limit case
where Dpy is taken to be the collection @l subsets oD 5 corresponds to the
Henkin's standard model (Henkin, 1950).
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Definition 3.1.1(Assignment) Given anl-frame{Da}a, we define arassign-
mentp as a map on the sets of variables 4n satisfying the condition that
p(xa) € Da for each typeA. Given an assignment, a variablexa, and an el-
ementd € Da, we write (p:xa/d) for the assignment which is the same mapas
except that the value of is d.

Definition 3.1.2(General Model) An L-frame {Da}a is said to be aeneral
modelM for L if there exists a map][, on the set of all terms such thaf][, € Da

for each terma of type A and for each assignmept satisfying the following
conditions:

() [xalp, = p(xa)
(i) [{xe Al ()}, ={d € Da | [p(X)](oix/a) = T}
(iii) [(a, b)], = ([al,, [bl,)
(V) [({a, b))i], = [al,
v) [({a, b)2], = [b],
(vi) [a=a],=T if [a], =[a],
(vii) [a=2a], Alop@)], < [¢@)],
(vii) [aea], =T if [a], € [e],
(ix) [ae{xe Ao, = [p@)],
(X) [p/\ Q]p = [p]p A [Q]p
(i) [=pl, =[P}
(xii) [Vx € A.p(X)], = Adepalld(X)](o:x/a)}

Definition 3.1.3Validity). Let M beageneralmodelfd. Forl" = {p, p2, ...,
pm}, wedefinel’], as[pil, A [P2l, A -+ A[Pml, if m > 0; T otherwise. We say
thatl” - pisvalidin M, or symbolically we writd™ =, p, provided['], < [pl],
foranyp. We writel" = pif T =, p in every general mode\.

It may not be immediately clear whether there actually exists a general model
that satisfies all the above conditions. In the next subsection, we explicitly construct
a general model, each domdirp, of which is a countable set.

3.2. Soundness, Completeness, and Consistency
3.2.1. Soundness

The soundness theorem is stated as follows: i p is provable, thed™ =
p. We can show that the endsequent in every proof diagram is valid in every
general model, by induction on the construction of the proof: Given any model,
the improper rule is obviously turned out to be valid. For the induction step, one
may verify that for each rule, if all the premises are valid, then the conclusion is
also valid. Thus the proof of the soundness theorem is completed.
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3.2.2. Completeness

The completeness theorem is stated as followd: K p, thenT  p is
provable.

The proof begins by introducing the Lindenbaum algebré.dfet us define a
relation~ on the set of all closed terma:~ &’ if and only if the sequerit a = &’
is provable. We see that this relation is an equivalence relation: a relation that is
reflexive, symmetric, and transitive. The equivalence classsflenoted byd] .
The set of all equivalence classessehtenceforms an orthomodular lattice with
the following ordering relation and operations:

e [plz <[ql iff pF qis provable.
* APz, [dlz) =[pAdle
* [plz =[Pl

This orthomodular lattice is denoted hy. In general, any orthomodular lattice
is embeddable into some complete orthomodular lattice (Bell, 1983). A complete
orthomodular lattice that contains, as a suborthomodular lattice is referred to
asL, to be used in the construction of the canonical motg&] for £. We give
M. as a model for’’, which is an extension of the languageby adding some
constants. For us, it is sufficient to discust. since a model for' is also a model
for £. So we abuse notation and simply writdor £'.

We define theC-frame{Da} of M. by induction on the construction of type
A, with the one-to-one mag on the set of equivalence classes of closed terms,
such thatd([a] ) € Da for each terma of type A. For each ground typé, Da
is a set of all equivalence classes of closed terms of fyp@d ® is the identity
map. In particularD; is a singleton set whose unique elementis§ndDqg, is L
defined above. We extend the langu#gey adding for eacld € D, the constant
symbold such that®d(d) = d. For each the set-like terim of type PA, we first
introduce the concept of property @f Recall that is of the form{x € A | ¢(x)}
by definition. The property af is then meant to be the equivalence clasg (),
that is, pp(X)]-. Wheng(x) is of the formx € {x € A| ¢'(x)}, we can also say
[¢'(X)] . is the property ofx, since we see that the sequeéntp(x) = ¢'(X) is
provable. Now assume that the domdn, and the mapd from the set of all
closed terms of typeA onto D, have already been defined. L&(«) be the
set{d € Da | ®([¢(d)]z) = T}, whered is a closed term of typé\ such that
®(d) = d, and p(x)] 2 is the property ofc. ThenDp,, is defined to be the totality
of ®(«) of each set-like terna of type PA. Finally, Da,g is constructed as the
usual direct produdD, x Dg of the sets with the trivial mag.

Having so defined thé-frame{D a} A with the map &], = ®([a,] ), we call
it the canonical modelM. for £. Herea, means the closed term obtained from
a by replacing all free occurrences fwith the closed ternal such thatp(x) =
®(d) Dpa.
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The completeness proof using the canonical moti&l goes as follows:
Supposéd” = p. In particular" =4, p for the canonical modeM. This means
thatl" F pis provable. (For sequents with afree variablE =, pimpliesE=ay,
I = p, that is,E=nm, VX € A(I' = p). Hence Vx € A(I" = p) is provable,
and sa- I' = pis provable, thatis[" - pis provable.)

3.2.3. Consistency

A collectionT" of sentences is calleiiconsistentf the sequent” - L is
provable; otherwiseonsistent

Our higher order quantum logi€ is consistent. We see this as follows:
Suppose for contradiction thiat L is provable. Then by the soundness theorem,
[L], isinterpreted ag in every general model. This does not hold, however, in a
model withDg such thafT £ L.

4. QUANTUM SET THEORY
4.1. Notation

Let us recall that a term of tydeA for some typeA is called a set-like term
in £ and a closed set-like term is called Arset. Note that it makes sense to write
X € a wherex is a variable of some typA and« is an£-set of typePA. We use
the following notational conventions:

VX € a.¢p(X) = VX € A((X € @) = ¢(X))
X € a.p(X) = Ix € A.((X € @) A P(X))

Alx € a.p(X) = 3X € A((X € @) A (X))
xea|pX)}={xeA|(xea)rpX)}

The usual set-theoretic operations and relations are then defined as follows:

e o C B=Vxe€ax e (wherew andg are of the same typeA.)

eaNB={xeA|Xea)A(xep)} (wherex andp are of the same type
PA)

e aUB={xe A|(Xea)V(xep) (wherex andg are of the same type

PA)

NU ={x e A|Va e UX € a}

UU={e AldaeeUxeua}

UporA={Xxe A|T}

paorgp ={xe Al 1}

—a={XeA| (X e a)}

Pe={ue PA|luCa}

e axB={X,y)e AxB|(Xea)A(ye B)} (wherex is of typePAand
B is of typePB. Both may be of the same type.)
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e S ={Ue PAAxB)|(UC (¢xpB)AVXea(TyepB.(XY) eul
(wherea is of type PA and 8 is of type PB. Both may be of the same

type.)
e la}={xe A|x=a}

Remark. Some operations must obey the constraints on types shown in the paren-
theses. This is what Bell (1988) calls a “local” property.

4.2. Theorems on Sets
4.2.1. Provable Sequents on Sets

For example, the following sequents are derivableCinOur quantum set
theory shares many of its characteristics with classical set theory.

Fa=B&VXxe AXea & xep) 4.1)
FaCo 4.2)
Fl@SprBCa)=a=p (4.3)
F X e Ua (4.4)

providedx is of type A
F—=(X € ¢a) (4.5)

providedx is of type A
FaePBoacp (4.6)

4.2.2. Unprovable Sequents on Sets

Some familiar sequents are, however, unprovabl@.imhese “weaker” fea-
tures of quantum set theory are in sharp contrast with those of classical set theory.
Specifically, we can construct countermodels for the following sequents:

(@SBp)ABSy)Facy 4.7)

This sequent expresses the law of transitivity. Suppose for contradiction that it is
provable. Thenitis easyto seethatd « = x e p)A(Xe B =Xxey)FXx €

a = X € y is also provable. Letting = (X € o), q = (x € B), andr = (x € y),

we deducetpv (A p)A(—qVv(rAQ) - —pV( A Pp), which is not valid

in the following model: LetDg be the collection of all closed subspacesRSf
(3-dimensional real Euclidean space) andiget (1, 0, 0),V, = (1, 1, 0), [p], =
Span(vy), [q], = Span(Vy, V), and [], = Span(V,), whereSpan(vy, . . ., Vi) de-
notes the closed subspace spanned by the vegtprs. , V. Thus we conclude
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by the soundness theorem that 4.7 is unprovable.

o)Ay SBFy S(@np) (4.8)

Suppose for contradiction that this sequent is provable. This means that
Xey=>xea)A(xey=>xeB)kFxey = (Xeanxep)is provable.
Lettingp= (X € @), = (x € B8),andr = (X € y), we deducer v (pATr)) A
(=rv(@Ar))E=rv(pAagAar). Further, lettingp’ = (pAr),q =(qQAr),
andr’ = (—r), we may rewrite thisas (v p)A (' vg) =1’ v (p AQ). This
is the very instance of the distributive law, which is abandoned in quantum logic.
Therefore it is not valid in some models, and hence is unprovable in general.

(@UB)SyF@Sy)A(BSY) (4.9

Note that- o C (a U B) is a provable sequent. Replacifign 4.7 witha U 8
we may apply the discussion of the preceding paragraph.
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