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The aim of this paper was to lift traditional quantum logic to its higher order version
with the help of a type-theoretic method. A higher order axiomatic system is defined
explicitly and then a sound and complete class of models is given. This is an attempt to
provide a quantum counterpart of classical “set theory” or intuitionistic “topos.”
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1. INTRODUCTION

Ordinary mathematics is carried out in classical set theory, which is based on
classical logic. From this perspective, each choice of underlying logic must lead to
a different set theory. A most noteworthy example of such a study is a construction
of topos model for intuitionistic logic; an elementary topos can be considered as a
universe of intuitionistic sets (Bell, 1988; Lambek, 1980). The following questions
are then raised: Can we have a set theory based onquantum logic? If so, how is
quantum mathematicsdifferent from ordinary mathematics?

Although several suggestions have been made to establish quantum set theory,
none has been successful enough to be the basis of a rich mathematics. Takeuti
(1981) transfinitely constructed his quantum set theory on the analogy of Boolean
valued model for classical set theory. Unfortunately, however, it violates equality
axioms by its very nature. One has to admit that no interesting mathematics could be
founded without appropriate equality. Another approach is to extend the concept
of quantum logic first, and then consider a set theory based on it. Nishimura’s
empirical set theory (Nishimura, 1995) was intended to be the foundation, not
only of quantum mechanics, but of a more general setting—empirical sciences.
His development of topos-like theory is quite fascinating; however, a subobject
classifier and exponentials in the theory are allowed to exist only in very special
cases. This seems to expose an intrinsic uncongeniality between empirical logic (in
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particular, quantum logic) and topos theory. Finkelstein (1992) has also adopted a
higher order language for quantum theory under the name of higher order quantum
logic, employing the structure of Grassmann algebra; its style of formulation differs
markedly from that of traditional lattice logic.

In this paper, we focus onorthomodular lattice—the most well-known repre-
sentation of quantum logic (Dalla Chiara, 1984) and lift it in a very natural way to
its higher order version with the help of a type-theoretic method. Section 2 provides
a syntactic framework of our higher order quantum logic with equality, which is
shown to be sufficiently expressive to develop a set theory. Section 3 presents a
complete class of models for the syntax, that is, a universe of quantum sets. The con-
sistency of the system is immediately derived from the existence proof of a model.
Finally, some characteristic features of quantum sets are examined in Section 4.

2. FORMAL SYNTAX

2.1. Language

We set out to define our formal languageL of orderω via a type-theoretic
method, specifyingtypesandterms.

Definition 2.1.1.(Types). The symbols for types of expressions are defined in-
ductively as follows:

(i) 1 andÄ are types.
(ii) If necessary, one may have at most countably many additional symbols

for types.
(iii) If A is a type, so isPA.
(iv) If A andB are types, so isA× B.

Types which are not of the formPAor A× B are calledground types.

Definition 2.1.2.(Terms). Terms are expressions referring to objects or statements
in a world. For each typeA, a term of typePA is called aset-like term. A set-like
term that contains no free variables is called anL-set, or a quantum set, which
is an expression of a property. A term of typeÄ is sometimes called aformula,
which is an expression of a fact. A formula that contains no free variables is called
a closed formula or asentence. The inductive definition is as follows:

(i) A symbol∗ is a term of type 1. For each ground typeA, one may add
at most countable constants of typeA to L. A constant of typeA is a
term of typeA.

(ii) For each typeA, we give countably many variablesxA, yA . . .of type
A, sometimes omitting the subscripts. A variable of typeA is a term of
type A.
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(iii) If φ(x) is a formula that possibly contains a variablex of type A, then
{x ∈ A | φ(x)} is a (set-like) term of typePA.

(iv) If a andb are terms of typeA andB, respectively, then〈a, b〉 is a term
of type A× B.

(v) If a is a term of typeA× B, then (a)1 and (a)2 are terms of typeA and
B, respectively.

(vi) If a anda′ are both terms of the same type, thena = a′ is a formula.
(vii) If a andα are terms of typeA andPA, respectively, thena ∈ α is a

formula.
(viii) If p andq are both formulas, then so isp∧ q.

(ix) If p is a formula, then so is¬p.
(x) If φ(x) is a formula that possibly contains a variablex of type A, then
∀x ∈ A.φ(x) is a formula.

Remark. Parentheses are used to disambiguate expressions as usual. Some other
useful symbols can be introduced as abbreviations:

• p∨ q ≡ ¬(¬p∧ ¬q)
• p⇒ q ≡ ¬p∨ (p∧ q)
• p⇔ q ≡ (p⇒ q) ∧ (q⇒ p) ≡ (p∧ q) ∨ (¬p∧ ¬q)
• ∃x ∈ A.φ(x) ≡ ¬(∀x ∈ A.¬φ(x))
• ∃!x ∈ A.φ(x) ≡ ∃x ∈ A.(φ(x) ∧ ∀y ∈ A.(φ(y)⇒ (x = y))
• > ≡ ¬(p∧ ¬p)
• ⊥ ≡ ¬>
• {〈x, y〉 ∈ A× B | φ(x, y)} ≡ {z ∈ A× B | ∃x ∈ A.(∃y ∈ B.(z= 〈x, y〉
∧ φ(z)))}

2.2. Rules

We now state the formal proof procedure for our higher order quantum logic.
In the following, we writeA, B,. . . for types,p, q, . . . for formulas,a, b, . . . for
terms, andx, y, . . . for variables.φ(x) represents a formula that possibly contains
a free variablex andφ(a) a formula obtained fromφ(x) by replacing all free oc-
currences ofx with a. The substitution is performed in the usual manner; technical
details are omitted. For notational simplicity, we exclusively consider formulas
with at most one free variable; the modification for multiple free variables is easy
to perform.0 denotes a finite (possibly empty) multiset of formulas, where a
multiset means a set in which each element may occur more than once.

The intuitive meanings of the clauses listed below are as follows: The ex-
pression of the form0 ` p is called asequent, asserting that one can syntactically
deduce the formulap from the assumption of all the formulas in0. The expres-
sions0, p ` q and p, q ` r mean0 ∪ {p} ` q and{p, q} ` r , respectively. The
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sequents above the horizontal line are the premises of the rule, and the one below
it is the conclusion of the rule: if all the sequents above the line hold, so does the
one below it. The one-line rules such as 2.1 are sometimes calledimproper rules,
asserting that those sequents always hold without any premises.
Structural Rules

p ` p (2.1)

0 ` p 0, p `, q

0 ` q
(Cut) (2.2)

0 ` q

0, p ` q
(2.3)

0(x) ` φ(x)

0(a) ` φ(a)
(2.4)

Logical Rules

p∧ q ` p (2.5)

p∧ q ` q (2.6)

0 ` p 0 ` q

0 ` p∧ q
(2.7)

p ` ¬¬p (2.8)

¬¬p ` p (2.9)

p∧ ¬p ` q (2.10)

p ` q

¬q ` ¬p
(2.11)

∀x ∈ A.φ(x) ` φ(a) (2.12)

0 ` φ(x)

0 ` ∀x ∈ A.φ(x)
(2.13)

wherex does not occur freely in0.

p∧ ¬(p∧ ¬(q ∧ p)) ` q (Orthomodular Law) (2.14)

Equality Rules

` a = a (2.15)

a = b, φ(a) ` φ(b) (2.16)

p ` q q ` p

` p = q
(2.17)
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Set Rules

` z= ∗ (2.18)

wherez is a variable of type 1.

` ((〈a, b〉)1 = a) ∧ ((〈a, b〉)2 = b) (2.19)

` 〈(a)1, (a)2〉 = a (2.20)

` (x ∈ {x ∈ A | φ(x)}) = φ(x) (Comprehension) (2.21)

Remark. The reader may observe that our framework can be regarded as a natural
higher order extension of traditional quantum logic. The structural and the logical
rules essentially correspond to the axiomatic systems for propositional or first-order
quantum logic, studied by Goldblatt (1974), Dalla Chiara (1984), and Nishimura
(1980).

Formal Proof. A diagram of rules that satisfies the following inductive specifi-
cations is said to be aproof diagram.The bottommost sequent of a proof diagram
is called itsend sequent.

(i ) An improper rule is itself a proof diagram.
(i i ) If P is a proof diagram whose end sequent is S, and S/T is one of the

rules listed above, then P/T is a proof diagram whose end sequent is T.
(iii) If P1 and P2 are both proof diagrams whose end sequents are S1 and S2,

respectively, and S1 S2/T is one of the rules listed above, then P1 P2/T
is a proof diagram whose end sequent is T.

We say that the sequent T isprovableif and only if there exists a proof diagram
whose end sequent is T.

2.2.1. Derivable Rules

We next present some useful rules to shorten proofs, which are derivable from
those shown in the list above. It turns out that our axiomatic system has sufficient
expressive power to produce plenty of mathematically interesting theorems. We
only provide sketches of some proofs or omit them entirely.

` > (2.22)

We have¬p∧ p ` ¬(a = a) by 2.10. Thena = a ` ¬(¬p∧ p) by 2.11. Since
` a = a by 2.15, we get̀ ¬(¬p∧ p) by 2.2.

0, p ` r

0, p∧ q ` r
(2.23)
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0, q ` r

0, p∧ q ` r
(2.24)

p ` r q ` r

p∨ q ` r
(2.25)

p ` p∨ q (2.26)

q ` p∨ q (2.27)

p = q ` p⇔ q (2.28)

p ` q

` p⇒ q
(Deduction Theorem) (2.29)

We havep ` q by assumption andp ` q by 2.1. Then we obtainp ` p∧ q by 2.7.
We also havep∧ q ` p by 2.5. Hence we infer̀ p = p∧ q by 2.17. Applying
2.2 to this and 2.28 establishes that` p⇔ p∧ q. In particular,̀ p⇒ p∧ q. We
get the conclusion by using the provable sequent` (p⇒ p∧ q) = (p⇒ q).

0 ` p⇒ q

0, p ` q
(2.30)

φ(x) ` p

∃x ∈ A.φ(x) ` p
(2.31)

wherex does not occur freely inp.

φ(x) ` ∃x ∈ A.φ(x) (2.32)

a = a′ ` a′ = a (2.33)

a = a′, a′ = a′′ ` a = a′′ (2.34)

〈a, b〉 = 〈c, d〉 ` (a = c) ∧ (b = d) (2.35)

We have 〈a, b〉 = 〈c, d〉, (〈a, b〉)1 = (〈a, b〉)1 ` (〈a, b〉)1 = (〈c, d〉)1 by 2.16.
Hence we obtain〈a, b〉 = 〈c, d〉 ` a = c by 2.19. Similarly, 〈a, b〉 = 〈c, d〉
` b = d. We then get the conclusion by 2.7.

(a = c) ∧ (b = d) ` 〈a, b〉 = 〈c, d〉 (2.36)

φ(x) = (x ∈ α) ` {x ∈ A | φ(x)} = α (2.37)

Let α ≡ {x ∈ A | ψ(x)}. We haveφ(x) = (x ∈ {x ∈ A | ψ(x)}) ` φ(x) = ψ(x)
by 2.21. We also haveφ(x) = ψ(x), {x ∈ A | φ(x)} = {x ∈ A | φ(x)} ` {x ∈ A |
φ(x)} = {x ∈ A | ψ(x)} by 2.16. Applying 2.2 leads to the desired conclusion.

(x ∈ α) = (x ∈ β) ` α = β (Extensionality) (2.38)

We have (x ∈ α) = (x ∈ β) ` {x ∈ A | (x ∈ β)} = α by letting φ(x) ≡ (x ∈ β)
in 2.37. Then it suffices to show that{x ∈ A | (x ∈ β)} = β. We obtain
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(x ∈ β) = (x ∈ β) ` {x ∈ A | (x ∈ β)} = β by using 2.37 again.

φ(x) = ψ(x) ` {x ∈ A | φ(x)} = {x ∈ A | ψ(x)} (2.39)

We haveφ(x) = ψ(x) ` φ(x) = (x ∈ {x ∈ A | ψ(x)}) by 2.21. Applying 2.2 to
this and 2.37 establishes the conclusion.

{x ∈ A | φ(x)} = {x ∈ A | ψ(x)} ` φ(x) = ψ(x) (2.40)

We have{x ∈ A | φ(x)} = {x ∈ A | ψ(x)}, (x ∈ {x ∈ A | φ(x)}) = (x ∈ {x ∈ A |
φ(x)}) ` (x ∈ {x ∈ A | φ(x)}) = (x ∈ {x ∈ A | ψ(x)}) by 2.16. We then get the
conclusion by 2.21.

3. FORMAL SEMANTICS

This section provides mathematically strict meanings of the expressions inL.
For this purpose, a class of models for higher order quantum calculus is specified,
roughly analogous to what is called Henkin models (Henkin, 1950) developed
originally for classical higher order logic. First, the precise concept of validity is
defined with respect to this class of models. Some important results are stated: Any
provable sequents are valid with respect to this class of models (soundness), and
conversely, any valid sequents with respect to this class of models are provable
(completeness). In the completeness proof, a concrete general model, called the
canonical model, is constructed. The existence of the model immediately implies
the consistency of our axiomatic system.

3.1. General Model forL
An L-frame is defined to be a collection of nonempty sets{DA}A(≡ {DA,

DB, . . .}) that satisfies the following conditions.
We associate with each ground typeA a setDA, which is referred to as thedo-

mainof typeA. D1 andDÄmust in particular be a singleton set and an orthomodular
lattice, respectively. An orthomodular lattice here means an orthocomplemented
lattice satisfying the orthomodular law (Dalla Chiara, 1984). Its order, equality,
inf, orthocomplementation, top, and bottom are denoted by≤,=, ∧, ∗,>, and
⊥, respectively (some symbols are the same as our logical symbols; this is not
expected to cause confusion since it is clear from the context). The domains of the
other types are constructed inductively.DPA is a certain collection of subsets of
DA, i.e., DPA ⊆ 2DA andDA×B is the usual set-theoretic productDA × DB.

Remark. The reduced case whereDÄ = {>,⊥} corresponds to a gerneral model
for classical higher order logic (Andrews, 1972; Henkin, 1950). Another limit case
whereDPA is taken to be the collection ofall subsets ofDA corresponds to the
Henkin’s standard model (Henkin, 1950).
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Definition 3.1.1(Assignment). Given anL-frame{DA}A, we define anassign-
mentρ as a map on the sets of variables inL, satisfying the condition that
ρ(xA) ∈ DA for each typeA. Given an assignmentρ, a variablexA, and an el-
ementd ∈ DA, we write (ρ:xA/d) for the assignment which is the same map asρ

except that the value ofxA is d.

Definition 3.1.2(General Model). An L-frame {DA}A is said to be ageneral
modelM forL if there exists a map [·]ρ on the set of all terms such that [a]ρ ∈ DA

for each terma of type A and for each assignmentρ, satisfying the following
conditions:

(i) [xA]ρ = ρ(xA)
(ii) [ {x ∈ A | φ(x)}]ρ = {d ∈ DA | [φ(x)](ρ:x/d) = >}

(iii) [ 〈a, b〉]ρ = ([a]ρ , [b]ρ)
(iv) [( 〈a, b〉)1]ρ = [a]ρ
(v) [(〈a, b〉)2]ρ = [b]ρ

(vi) [a = a′]ρ = > if [ a]ρ = [a′]ρ
(vii) [ a = a′]ρ ∧ [φ(a)]ρ ≤ [φ(a′)]ρ

(viii) [ a ∈ α]ρ = > if [ a]ρ ∈ [α]ρ
(ix) [a ∈ {x ∈ A | φ(x)}]ρ = [φ(a)]ρ
(x) [ p∧ q]ρ = [ p]ρ ∧ [q]ρ

(xi) [¬p]ρ = [ p]∗ρ
(xii) [ ∀x ∈ A.φ(x)]ρ = ∧d∈DA{[φ(x)](ρ:x/d)}

Definition 3.1.3(Validity). LetMbe a general model forL. For0 ≡ {p1, p2, . . . ,
pm}, we define [0]ρ as [p1]ρ ∧ [ p2]ρ ∧ · · · ∧ [ pm]ρ if m > 0;>otherwise. We say
that0 ` p isvalid inM, or symbolically we write0 |=M p, provided [0]ρ ≤ [ p]ρ
for anyρ. We write0 |= p if 0 |=M p in every general modelM.

It may not be immediately clear whether there actually exists a general model
that satisfies all the above conditions. In the next subsection, we explicitly construct
a general model, each domainDA of which is a countable set.

3.2. Soundness, Completeness, and Consistency

3.2.1. Soundness

The soundness theorem is stated as follows: If0 ` p is provable, then0 |=
p. We can show that the endsequent in every proof diagram is valid in every
general model, by induction on the construction of the proof: Given any model,
the improper rule is obviously turned out to be valid. For the induction step, one
may verify that for each rule, if all the premises are valid, then the conclusion is
also valid. Thus the proof of the soundness theorem is completed.
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3.2.2. Completeness

The completeness theorem is stated as follows: If0 |= p, then0 ` p is
provable.

The proof begins by introducing the Lindenbaum algebra ofL. Let us define a
relation∼ on the set of all closed terms:a ∼ a′ if and only if the sequent̀ a = a′

is provable. We see that this relation is an equivalence relation: a relation that is
reflexive, symmetric, and transitive. The equivalence class ofa is denoted by [a]L.
The set of all equivalence classes ofsentencesforms an orthomodular lattice with
the following ordering relation and operations:

• [ p]L ≤ [q]L iff p ` q is provable.
• ∧([ p]L, [q]L) ≡ [ p∧ q]L
• [ p]∗L ≡ [¬p]L

This orthomodular lattice is denoted byL0. In general, any orthomodular lattice
is embeddable into some complete orthomodular lattice (Bell, 1983). A complete
orthomodular lattice that containsL0 as a suborthomodular lattice is referred to
as L, to be used in the construction of the canonical modelMc for L. We give
Mc as a model forL′, which is an extension of the languageL, by adding some
constants. For us, it is sufficient to discussMc since a model forL′ is also a model
for L. So we abuse notation and simply writeL for L′.

We define theL-frame{DA} ofMc by induction on the construction of type
A, with the one-to-one map8 on the set of equivalence classes of closed terms,
such that8([a]L) ∈ DA for each terma of type A. For each ground typeA, DA

is a set of all equivalence classes of closed terms of typeA and8 is the identity
map. In particular,D1 is a singleton set whose unique element is [∗], andDÄ is L
defined above. We extend the languageL by adding for eachd ∈ DÄ the constant
symbol d̄ such that8(d̄) = d. For each the set-like termα of type PA, we first
introduce the concept of property ofα: Recall thatα is of the form{x ∈ A | φ(x)}
by definition. The property ofα is then meant to be the equivalence class ofφ(x),
that is, [φ(x)]L. Whenφ(x) is of the formx ∈ {x ∈ A | φ′(x)}, we can also say
[φ′(x)]L is the property ofα, since we see that the sequent` φ(x) = φ′(x) is
provable. Now assume that the domainDA, and the map8 from the set of all
closed terms of typeA onto DA, have already been defined. Let8(α) be the
set {d ∈ DA | 8([φ(d̄)]L) = >}, whered̄ is a closed term of typeA such that
8(d̄) = d, and [φ(x)]L is the property ofα. ThenDPA, is defined to be the totality
of 8(α) of each set-like termα of type PA. Finally, DA×B is constructed as the
usual direct productDA × DB of the sets with the trivial map8.

Having so defined theL-frame{DA}A with the map [a]ρ ≡ 8([aρ ]L), we call
it the canonical modelMc for L. Hereaρ means the closed term obtained from
a by replacing all free occurrences ofx with the closed term̄d such thatρ(x) =
8(d̄) DPA.
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The completeness proof using the canonical modelMc goes as follows:
Suppose0 |= p. In particular,0 |=Mc p for the canonical modelMc. This means
that0 ` p is provable. (For sequents with a free variablex,0 |=Mc p implies|=Mc

0 ⇒ p, that is,|=Mc ∀x ∈ A.(0 ⇒ p). Hence` ∀x ∈ A.(0 ⇒ p) is provable,
and sò 0 ⇒ p is provable, that is,0 ` p is provable.)

3.2.3. Consistency

A collection0 of sentences is calledinconsistentif the sequent0 ` ⊥ is
provable; otherwiseconsistent.

Our higher order quantum logicL is consistent. We see this as follows:
Suppose for contradiction that̀⊥ is provable. Then by the soundness theorem,
[⊥]ρ is interpreted as> in every general model. This does not hold, however, in a
model withDÄ such that> 6= ⊥.

4. QUANTUM SET THEORY

4.1. Notation

Let us recall that a term of typePA for some typeA is called a set-like term
in L and a closed set-like term is called anL-set. Note that it makes sense to write
x ∈ α wherex is a variable of some typeA andα is anL-set of typePA. We use
the following notational conventions:

• ∀x ∈ α.φ(x) ≡ ∀x ∈ A.((x ∈ α)⇒ φ(x))
• ∃x ∈ α.φ(x) ≡ ∃x ∈ A.((x ∈ α) ∧ φ(x))
• ∃!x ∈ α.φ(x) ≡ ∃!x ∈ A.((x ∈ α) ∧ φ(x))
• {x ∈ α | φ(x)} ≡ {x ∈ A | (x ∈ α) ∧ φ(x)}

The usual set-theoretic operations and relations are then defined as follows:

• α ⊆ β ≡ ∀x ∈ α.x ∈ β (whereα andβ are of the same typePA.)
• α ∩ β ≡ {x ∈ A | (x ∈ α) ∧ (x ∈ β)} (whereα andβ are of the same type

PA.)
• α ∪ β ≡ {x ∈ A | (x ∈ α) ∨ (x ∈ β)} (whereα andβ are of the same type

PA.)
• ∩U ≡ {x ∈ A | ∀α ∈ U.x ∈ α}
• ∪U ≡ {∈ A | ∃α ∈ U.x ∈ α}
• UA or A ≡ {x ∈ A | >}
• φA or φ ≡ {x ∈ A | ⊥}
• −α ≡ {x ∈ A | ¬(x ∈ α)}
• Pα ≡ {u ∈ P A | u ⊆ α}
• α × β ≡ {〈x, y〉 ∈ A× B | (x ∈ α) ∧ (y ∈ β)} (whereα is of typePAand
β is of typePB. Both may be of the same type.)
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• βα ≡ {u ∈ P(A × B) | (u ⊆ (α × β)) ∧ ∀x ∈ α.(∃!y ∈ β.〈x, y〉 ∈ u)}.
(whereα is of type PA andβ is of type PB. Both may be of the same
type.)
• {a} ≡ {x ∈ A | x = a}

Remark. Some operations must obey the constraints on types shown in the paren-
theses. This is what Bell (1988) calls a “local” property.

4.2. Theorems on Sets

4.2.1. Provable Sequents on Sets

For example, the following sequents are derivable inL: Our quantum set
theory shares many of its characteristics with classical set theory.

` α = β ⇔ ∀x ∈ A(x ∈ α ⇔ x ∈ β) (4.1)

` α ⊆ α (4.2)

` (α ⊆ β ∧ β ⊆ α)⇒ α = β (4.3)

` x ∈ UA (4.4)

providedx is of typeA

` ¬(x ∈ φA) (4.5)

providedx is of typeA

` α ∈ Pβ ⇔ α ⊆ β (4.6)

4.2.2. Unprovable Sequents on Sets

Some familiar sequents are, however, unprovable inL. These “weaker” fea-
tures of quantum set theory are in sharp contrast with those of classical set theory.
Specifically, we can construct countermodels for the following sequents:

(α ⊆ β) ∧ (β ⊆ γ ) ` α ⊆ γ (4.7)

This sequent expresses the law of transitivity. Suppose for contradiction that it is
provable. Then it is easy to see that (x ∈ α ⇒ x ∈ β) ∧ (x ∈ β ⇒ x ∈ γ ) ` x ∈
α ⇒ x ∈ γ is also provable. Lettingp ≡ (x ∈ α), q ≡ (x ∈ β), andr ≡ (x ∈ γ ),
we deduce (¬p∨ (q ∧ p)) ∧ (¬q ∨ (r ∧ q)) ` ¬p∨ (r ∧ p), which is not valid
in the following model: LetDÄ be the collection of all closed subspaces ofR3

(3-dimensional real Euclidean space) and setEv1 = (1, 0, 0),Ev2 = (1, 1, 0), [p]ρ ≡
Span(Ev1), [q]ρ ≡ Span(Ev1, Ev2), and [r ]ρ ≡ Span(Ev2), whereSpan(Ev1, . . . , Evk) de-
notes the closed subspace spanned by the vectorsEv1, . . . , Evk. Thus we conclude
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by the soundness theorem that 4.7 is unprovable.

(γ ⊆ α) ∧ (γ ⊆ β) ` γ ⊆ (α ∩ β) (4.8)

Suppose for contradiction that this sequent is provable. This means that
(x ∈ γ ⇒ x ∈ α) ∧ (x ∈ γ ⇒ x ∈ β) ` x ∈ γ ⇒ (x ∈ α ∧ x ∈ β) is provable.
Letting p ≡ (x ∈ α), q ≡ (x ∈ β), andr ≡ (x ∈ γ ), we deduce (¬r ∨ (p∧ r )) ∧
(¬r ∨ (q ∧ r )) ` ¬r ∨ (p∧ q ∧ r ). Further, letting p′ ≡ (p∧ r ), q′ ≡ (q ∧ r ),
andr ′ ≡ (¬r ), we may rewrite this as (r ′ ∨ p′) ∧ (r ′ ∨ q′) ` r ′ ∨ (p′ ∧ q′). This
is the very instance of the distributive law, which is abandoned in quantum logic.
Therefore it is not valid in some models, and hence is unprovable in general.

(α ∪ β) ⊆ γ ` (α ⊆ γ ) ∧ (β ⊆ γ ) (4.9)

Note that̀ α ⊆ (α ∪ β) is a provable sequent. Replacingβ in 4.7 withα ∪ β
we may apply the discussion of the preceding paragraph.
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